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Abstract

Meteorological image sequences acquired with re-
mote sensing devices contain huge amounts of avail-
able data featuring the temporal evolution of highly de-
formable and complex structures. In this study is pre-
sented a robust and effective model-based segmentation
procedure for approximating highly deformable cloud
structures. The whole image sequence may be viewed
as a 3D data set, but the classical techniques for per-
forming 3D segmentation are not meaningful here, be-
cause cloud structures are not shapes in the classical
sense. The model-based segmentation presented here
uses level-sets controlled by particle systems. A specific
energy formulation is introduced, permitting the use of
robust conjugate gradient techniques. The model is vali-
dated on a real meteorological image sequence. We out-
line the generalizations of the this particle system to per-
form image analysis tasks on truly 3D images.

1. Introduction

Since their inception, satellite image data confront
image analysis specialists with particular demands.
They represent huge amount of time varying data, and
they often feature complex structures subject to high ge-
ometrical variations and topological changes, as it is the
case in meteorological image sequences. Geostation-
nary satellites produce data sets which can be viewed
as 3D images, or more precisely as 2D dynamic im-
age sequences. 3D image analysis techniques could
sometimes be used ([5, 8]) but the very specific na-
ture of clouds structures (they do not possess well de-
fined shapes) lead to some difficulties: even optical flow
methods need specific supplementary assumptions to
describe the inner motion of vortices, as described in [1].

In this study is presented a preliminary research on me-
teorological satellite image sequences which is intended
to describe a model-based segmentation for time varying
images displaying deformable structures. The method
can be applied to 2D sections of 3D image data sets.
We make the decision of focusing on level-set methods
([10]), as they feature many desirable properties in a
meteorological application context. However, classical
level-set methods are not sufficient to plainly fulfill the
requirements of the application. They require complex
numerical methods, and they do not permit interactive
control on the shape. In the meteorological application
framework, one does not need a complete and automatic
image analysis set of tools. Instead, it is expected that
image analysis helps an operator in extracting and ma-
nipulating a shape for various purposes such as data base
indexing or scientific visualization queries. From that
point of view, it is desirable that the shape can be ma-
nipulated with control points, and that image analysis
tools are fast and robust. Taking into account these re-
quirements, the work presented in this study comes up
with a new level-set approach to deformable boundary
approximation. In this study, shapes are approximated
by particle systems controlling a level set. The implicit
formulation presented in this work makes it possible to
use the particle system formulation suitable for perform-
ing segmentation in true 3D imagery. Such generaliza-
tions are outlined here.

In the classical level-set formulation, curvature is
used to control the evolution of a curve. In the particle
system approach presented here, geometric and physi-
cal characteristics are incorporated in the particle system
which is then responsible for the evolution of the level-
set. The physical properties of the level-set come from
assignements on the internal and external energies of the
particle system. This results in fast, robust level-set ap-
proximations, with adjustable accuracy.



The initialization step has received particular atten-
tion by using the skeleton of an image and the distance
map. It permits the design of an efficient initialization
procedure, where a minimum set of particles is assigned
specific geometric location in an image, resulting in a
stable minimization procedure. It produces a set of par-
ticles consistent with elementary transformations such
as translation and rotation, thus permitting the analysis
of motion.
The presentation is organized as follows. In section 2,
we describe precisely some features and characteristics
of clouds in a meteorological image sequence. Section
3 focuses on level sets controlled by particle systems. In
section 4 an energy formulation for the particle system
is described. Section 5 focuses on contour extraction. In
section 6 the use of skeletons for a robust initialization is
presented. The results of the method are shown in sec-
tion 7. In section 8 is we outline a generalization of the
method for generating an interpolating surface between
successive templates. Conclusion and perspectives are
contemplated in section 9.

2. The specific characteristics of time-
varying cloud image sequences

Meteorological image sensors collect images show-
ing the apparition, evolution and motion of cloud struc-
tures. They produce data sets that help the compu-
tation of numerous parameters associated with clouds,
such as wind speeds. They are a key component of any
weather forecast system. Cloud structures may appear in
very different shapes in these images, such as vortices,
where the cloud is winding round its center, while it is
also subject to global translation and rotation motion, or
in more evanescent cloud structures, which can break
themselves in connected components, merge or disap-
pear. (See figure 1). It is important to notice that, in

Figure 1. High altitude cloud over Sahel. Meteosat IR image

provided by L.M.D.

connection with 3D image analysis, the cloud segmen-

tation itself involves specific difficulties. This is for in-
stance the case of Sahel rain-season: the clouds have a
remarkably constant altitude, and therefore a very nar-
row grey level variance. More complicated matters are
encountered with vortex structures, which involve much
more larger areas, and altitude variability. Specific anal-
ysis must be performed to extract them. (See [2] for
examples).

The fundamental difficulties are related to the temporal
aspect of the problem, and of course to clouds them-
selves. It is an important matter to not forget that clouds
are not “objects” in the usual sense, as for instance build-
ings in airbone imagery, or organs in medical imaging.
The satellite provides measures of the top (or sometimes
an average) of a vertical fluid structure. The cloud is
often subject to intense inner motions. It has no well-
defined shape, and the presence of motion both inter-
nally and at its borders may affect the sharpening of
visible edges. The most awkward consequence is that
clouds do not always preserve their integrity: they in-
teract with atmosphere and other clouds. This is in fact
related to motion problems.

Cloud analysis therefore requires a model with spe-
cific characteristics:

Deformation: whether the cloud is segmented on the
basis of its edges or as a region, the model must
allow important and non-linear deformations of
edges.

Topology: topology changes are very often encoun-
tered. The model must handle this “naturally”, for
instance by imposing visco-elastic behaviors.

Global vs local motion: the local (though possibly
considerable) deformation of the structure is su-
perimposed to a global translation motion. A hier-
archical representation of motion is then suitable.

As mentionned in the introduction, the use of classical
3D segmentation technique is not well adapted to the
analysis of these very specific cloud structures. But any
cloud segmentation model can be very helpful for the
analysis of 3D images, wherever a classical polygonal
or voxel information is not always of primary impor-
tance. We will use a level set formalism to achieve the
image segmentation on these images. These level sets
are different from the classical formulation. They are
introduced in the next section.

3. Implicit objects

In computer graphics, implicit objects are success-
fully used to model shapes and physical properties of



objects that would be difficult to attain using standard
spline surface models [6]. Implicit functions are used
to:

� model any shape, even those with sharp corners
and protrusive many-furcated ramiforms,

� glue objects together without resorting to compli-
cated algorithms to properly handle the joints,

� control the viscosity of an object with very few
parameters,

� model complex topologies.

Let
����� ���

or
� ��	

. An implicit object 
 is defined by
an equation
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being a continuous or differentiable function
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. The quantity
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is called the iso-value. To allow the

possibility of narrow corners, function
�

is often written
in the form �+�-,/.�0
where
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is a distance function
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is a potential function.

Narrow corners and sharp edges are easily modelled if
0

is a 3�4 metric. For other parts of an object standard 3 �
metrics can be used. Many types of potential function

,
have been experimented. (See [4]). For instance we use
bounded support potential functions like ([13]):
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Instead of using a global function
�

, which would be of
little pratical use for our application, implicit functions
are used with the help of particle systems.

3.1. Particle system formulation

Particle systems have already been used to model
elastic surfaces [11]. A principal advantage of using
particle systems in image analysis is found in their abil-
ity of describing complex dynamics with a finite set of
particles. From that outlook, they capture the geome-
try and dynamics properties of a continuous shape with
more simple assignements written over the finite set of
particles. This is a very important matter which ulti-
mately justifies their use in this work. For instance, theZ

A distance function in the classical theory of metric spaces.

description of the elastic properties of an active contour
is written as an integral energy in the snake framework
or in the geodesic active contours. Particle systems al-
low the control of the dynamics properties of a shape by
using much more tractable forms of internal energy, thus
avoiding the resolution of cumbersome partial differen-
tial equations.
In the control point formulation of implicit functions,
the particle system used to describe a shape is a written
down as a finite set of points in the plane:

[��G�T\ #L] U^U^U ] \`_a�
each point

\cb
having a radius of influence d b . The set of

particles
[

is usually written as a disjoint union
[e��[gf�hi[ !

where
[ f

is the set of positive control points, and
[ !

the set of negative control points. Negative control
points are introduced for the modelling of concave parts
of an object, and also to reduce the amount of encoding
data. The implicit function

�
is written as
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where each implicit function
� b

is positive and math-
ematically expressed by an expression like (3). Wher-
ever a shape is modelled with an implicit function de-
fined with control points, the geometric and visco-elastic
properties of the shape are encoded within the particle
system defined by the control points and the stiffness
parameters of each local contribution

�7b
. Having set up

a particles system formulation for the level sets, we now
define in the next section the energy formulation of that
particles system.

4. Energy formulation

In this section, we introduce an internal energy re-
sponsible for the mutual interaction between the par-
ticles, and external energies coming from a set of ex-
tracted pixels.

4.1. The internal energy

The internal potential energy is responsible for the
physical behaviour of the particle system whenever it is
under the influence of the external force field. Here one
clearly needs a visco-elastic energy, in such a way that
the level-set both maintains its connectivity wherever
there is no topological change, and is flexible enough
so that its shape matches that of the structure’s bound-
ary. The generalized coordinates of our particle system
are:



� the
� � b ]�� b � cartesian coordinates of each control

point (or particle),

� the radius of influence d b .
The internal energy of the particle system is��� 8

F
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where
	 b � is the potential responsible of the mutual in-

teraction between particles
\ b

and
\ � . In classical New-

ton theory, the law of action and reaction is attained by
constraining the internal potential term between two par-
ticles as being a scalar function of the mutual interdis-
tance
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 . A generalized Lennard-Jones
potential 	�b � � � d b J d � � �� 0 M b � D 80 �b �
is repulsive at short distances, attractive at far distances,
and possesses an equilibrium position in-between (at� d b J d � �X� F .
4.2. External energies

The deformable model interacts with image data un-
der the control of the external forces. Their definition is
therefore application-dependent by nature. An external
energy is sought out in order to attract the iso-contour to-
wards extracted pixels in an image. A two-term external
energy is introduced.

4.3. Contour energy

Minimization of the following contour energy:
���� _�� ����� � k� m�� �%����\ �qDj�&� �
where � is the set of extracted pixels, results in an iso-
contour approximating the extracted pixels, but it does
not guarantee that the iso-contour approximate those ex-
tracted pixels only. Indeed, the iso-contour could also
approximate many other undesirable features in an im-
age, leading to iso-contours displaying non acceptable
small connected components. To avoid an iso-contour
approximating undesirable features in an image, a regu-
larizing term must be introduced. It is called the “collar”
energy, and is presented in the next subsection.

4.4. Collar energy

The implicit function framework leaves the user
with a remarkable freedom of designing various exter-
nal forces, adapted to different situations. This relies

on a basic property of any implicit model: the sim-
ple computation

�
of the iso-surface

�
at location

\
is

enough to establish whether
\

is inside the iso-contour�%���%\ � D �����S�
, outside

���"��\ ��D-�����S�
or right on

it
�%���%\ �OD�� ���S�

. Thus, masking specific values of���%\ � D �
makes it possible to contemplate region-based

approaches; a simple measure of the iso-contour prox-
imity can be formulated this way:

 "! ��\ �7�$#&%('�D �����%\ �cDj�&� �) � (1) ! �%\ � is maximal (equal to 1) on the iso-contour and
decreases toward zero more or less quickly, as tuned by) .
As for snakes methods, it can be envisaged to make ex-
trema of  ! close to the extrema of the image spatial gra-
dients. This would yet suffer from the same limitations
encoutered with early snakes: a close initialization is es-
sential since gradient tends to be uniformally zero within
uniform areas. Using distance maps, as suggested by
[9, 7], overcomes this problem: distance maps are com-
puted after an initial contour detection. Each location

\
of the image is assigned the distance to the nearest con-
tour point. This is of course appropriate if a good quality
contour detection can be carried out. The main advan-
tage is that the distance map gradient always points to-
wards contour points, even within uniform areas: within
homogeneous regions of an image, the gradient of inten-
sity is zero, though the gradient of the distance map does
not vanish. As a matter of fact, the product * �%\ �  +! ��\ �
(where * is the distance map) is minimal at:
� locations far from the iso-contour (small values of ! )

� locations close to the iso-contour (other values
of  ,! ) and close to the image contours ( * �%\ �
small).

The following external energy, defined on an image
�


 ���.-/-102� �CU^U^U ] � b ]�� b ] d b ] U^U^U �7�435376 * �%\ �  ! ��\ � 0 �%\ �
is therefore minimal if the iso-contour image fits the im-
age contours. The parameter ) can be viewed as a toler-
ance parameter: it is used to produce a tubular neigh-
bourhood around the iso-contour

�T�2� �L�
. A small

value of ) causes the proximity mask to be a narrow
area around the iso-contour, and thus the minimum of
 ���.-/-102�

will correspond to a faithfull representation of
contour points. On the contrary, more tolerant approxi-
mations are obtained using higher values of ) (see fig-
ure 2). This can be helpful if the noise on the image8

Computing 9 in a : control points formulation requires at most: distance computations.



generates many false contours, as this masking process
prevents the iso-contour of being attracted towards small
undesibable features of an image.

Figure 2. From Top to bottom: iso-contour, plot of ��� for
! �

��� # and
! � ��� � . The various collars correspond to regions where

����� ��� 	 , ���
� ��� � and ���
� ��� � . Background: distance map.

The definition of the external energy is yet insuffi-
cient to achieve an operational tracking method. Later
sections are devoted to the actual implementation of the
implicit framework on image data.

4.5. Total energy

The total energy is the sum of the internal and exter-
nal energies:
��
�,
 b _ � J�� 
 ��� _�� ����� J�� 
 ����-/- 02�
�

,
�

and
�

being weighing parameters. Since that to-
tal energy is a simple function of the geometrical at-
tributes of the particle system -the control points loca-
tions � b , � b , and the radii of influence d b - a simple and
robust minimization procedure consists in using a con-
jugate gradient method, because the partial derivatives

are explicitely computed. Refer to the table at the end of
section 7 for the values of the various parameters used
in the computation of the images.

5. Preprocessing step

The extraction of pixel features from the image data
is an essential preprocessing step: it is used to compute
distance maps, which play an important part in the def-
inition of external forces. It serves also in the compu-
tation of
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. Pixel extraction is achieved using a

property of clouds (see section 2): the altitude is highly
correlated to grey level values. As a matter of fact, a
simple thresholding of the image yields a set of loca-
tions very likely to be clouds and a first and rather good
approximation of clouds’ shape. This has been tested
on a 24 hours Meteosat sequence (48 images): clouds
are always detected by selecting low radiance pixels,
i.e. pixel with grey level above 0.7 on a scale ranging
from 0 to 1. Some small unwanted structures are also
detected, which are discarded using a size criterion: ar-
eas with contour length greater than 100 pixels are kept,
the others are discarded. A first approximation of the
shape is given by the contours of the selected areas. See
figure 3. The two parameters, i.e. the cloud detection

Figure 3. Frames 28 of the sequence. Top: extracted pixels form

the darker boundary. Bottom: skeleton image from distance map.

threshold and the size threshold, do not need to be care-
fully tuned: the size criterion is only used to discard par-



asits, and the detection threshold to select locations in-
side clouds. Since clouds are the areas with highest gray
levels, it is rather easy to choose an appropriate thresh-
old. Once a part of a cloud points has been selected,
a standard region growing algorithm is performed to fi-
nally obtain the clouds’ contours. The images displayed
in the following sections use the contour extraction de-
scribed herein.

6. Initialization

The initialization process is a key component in the
overall implicit particle system approximation, because
a proper initialization of the particles (and their radii
of influence) drives markedly the quality of the conver-
gence towards the boundary of the structure. To set up
a robust initialization process, one must rely on easily
computable features in the image data.
For that matter, we use the skeleton of the distance map.
By skeleton we mean the extrema of the distance map.
The implementation of the distance map skeleton is the
one described in [8]). This choice is dictated by the fact
that the distance map plays an important role in the ex-
ternal force field, and because skeleton’s complex fea-
tures give a fine indication of the structure’s complex-
ity: for instance, terminal points located at the branches’
extremities indicate protrusions. Consequently we put
positive control points located at the branches’ extrem-
ities, with a radius equal to the distance from the con-
tour. It should be noted that the external skeleton of a
closed shape gives precious information about the con-
cave parts of an object. By external skeleton we mean
those portions of the skeleton located outside the inte-
rior of the cloud. It can be used at the initialization
step for negative control points. This simple initializa-
tion process is illustrated in figure 4. Experimentation
shows that this kind of initialization accelerates the con-
vergence towards the extracted contour.

7. Results

The model-based image segmentation procedure is
applied on real image sequences, both provided by the
Laboratoire de Meteorologie Dynamique of the Ecole
Polytechnique. Given an image sequence of a spatio-
temporal shape, one can apply the previous methods to
track and analyze motion in the following way. On the
first image, particles are initialized on the skeleton and
the energy minimization process is performed using the
techniques described in the previous sections. On the
next image, one takes as an initialization the results pro-
duced by the minimization process on the previous im-
age, and so on iteratively until the end of the sequence.

Figure 4. Model initialization on frame 28. Top: particles (in

white) are placed on the skeleton endpoints. Bottom: first approxima-

tion of the contour (after minimization). The iso-contour is depicted in

grey, particles in white, image contours in white, and distance map is in

the background. The circles correspond to the radii of the particles.

We illustrate the process on two types of meteorologi-
cal images in figures 5 and 6. It should be noted from
these figures that the result of the segmentation may suf-
fer from local precision. This is quite natural for the
cloud shapes coming from the contour extraction pro-
cess: these shapes are highly irregular, so one needs
a high number of particles to preciselly represent the
shape. In an operational context however, it makes sense
to provide the user a less precise, but easily manipulable
description of the shape with few control points.
It is important to note that the particle system formu-
lation developped in this study will permit, in a work
in progress, a hierarchical representation of the shapes:
few control points are used to globally represent a struc-
ture, and more particles are added locally to better rep-
resent the more complex parts of a structure. Below is a
table showing the values of meaningful parameters used
in the segmentation process.

Indicative parameters values
parameter description value
� internal energy weight

�������
�
	��

external energy weight 1.0

 tolerance factor

��� � 8
� acceptable approximation threshold

����� Z



Figure 5. Vortex segmntation. Top: initialization, bottom: result

of the segmentation with few control points. Level-sets are in black.

Figure 6. approximation of a vortex’ contour on three consecutive

images of sequence used in 5. Level-sets are in black.



8. Use of an implicit surface for contour in-
terpolation

In a meteorological application framework, the prob-
lem of generating an interpolating surface between two
succesive occurences of a template comes from the mod-
eling of motion of time varying deformable structures.
The evolution of the structure between succesive tempo-
ral occurrences generates a continuous 3D surface, the
third dimension being time ( [3]). The main objective is
to compute the best possible surface. To perform this
task, one may require an evolution model, expressed
as constraints applied to this surface. The problem is
then to find the surface interpolating the two consecu-
tive contours and respecting these constraints. A good
interpolating surface should not cross itself, and the sur-
face should not display too much variations in curvature.
Here the structures are the clouds approximated by the
model presented in the previous sections.

More formally, two 2D contours
� # and

� � are
placed in two parallel planes � � � and � �G8 . In order to
focus this study on deformation, one can first apply the
rigid motion that performs the best matching between
the two contours

� # and
� � . This enables to manage the

global translation motion that is often observed on mete-
orological image sequences. One then looks for an inter-
polating surface � , with an elastic behavior, containing� # and

� � . At this point, one may put the following
observation: implicit interpolating surfaces never self-
intersect (indeed, such surfaces always possess tubular
neighborhoods [12]). In a work in progress, we want to
compute an interpolating implicit surface defined with
particle systems. Such an implicit interpolation surface
should display nice cross-sections, as there is no self-
intersecting problem. The problem is to give a consis-
tent initialization of the particles for the surface. For
that matter, we start from the initialization of the tem-
plates defined in the previous sections, and we set up a
matching between the particles. This matching problem
is much more simpler that any contour-matching prob-
lem, because it only relates a correrspondance between
points. The main idea is to use the particles of the seg-
mentation process performed on two consecutive images
to generate an acceptable initialization of the particles
for the implicit surface, and then use minimization tech-
niques ( [3]) to compute a better implicit surface. The
method is only outlined here, we are currently making
progress in that direction.

9. Conclusion

A level-set segmentation procedure based on implicit
functions defined by particle systems is presented. It has

the following advantages:
� interactive control on the shapes,

� the minimization procedure is based on the parti-
cles, leading to fast and robust minimization,

� it allows precise initialization of the particles by
use of the skeleton,

� it can be generalized to the case of 3D images by
using implicit surface interpolation between tem-
plates.

Although satellite images provide explicit time cross-
sections of deformable structures, we believe that the
method outlined here can be of great importance for the
case of more general 3D images. We are making some
progress in these directions.
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d’images scannographiques. In Actes du 1er Colloque
sur l’Imagerie et Traitement d’Images, Cannes, France,
Avril 1995.

[6] M. P. Cani-Gascuel and M. Desbrun. Animation of de-
formable models using implicit surfaces. IEEE Trans-
actions on Visualization and Computer Graphics, 3(1),
March 1997.

[7] L. D. Cohen and I. Cohen. Finite elements methods for
active contour models and balloons for 2d and 3d im-
ages. In IEEE Trans. pattern analysis and Machine In-
telligence, volume 15, pages 1131–1147, 1993.

[8] S. Fernandez-Vidal and G. Malandain. Digital euclidean
skeleton in n-d. In 9th Scandinavian Conference on Im-
age Analysis (SCIA’95), pages 517–524, Uppsala, Swe-
den, June 1995.

[9] O. Monga, R. Deriche, G. Malandain, and J.-P. Coc-
querez. Recursive filtering and edge tracking: two pri-
mary tools for 3-D edge detection. Image and Vision
Computing, 9(4):203–214, August 1991.



[10] J. A. Sethian. Level Set Methods. Evolving Interfaces in
Geometry, Fluid Mechanics, Computer Vision and Mate-
rials Science. Cambridge Monographs on Applied and
Computational Mathematics, 1996.

[11] R. Szeliski and D. Tonnesen. Surface modelling with
oriented particle systems. In Computer Graphics (Sig-
graph’92 proceedings), volume 26, pages 185–194,
1992. Also available as Technical Report, Digital Cam-
bridge Research laboratory, CRL 91/14, December 1991.

[12] L. Velho and J. Gomes. Approximate conversion of para-
metric to implicit surfaces. In Implicit Surfaces’95, pages
77–96, Grenoble, France, April 1995.

[13] G. Wyvill, C. Pheeters, and B. Wyvill. Data structures
for soft objects. Visual Computer, 2:227–234, 1986.


